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Abstract--General six-in-parallel SPS platform manipulators are constructed of six telescoping legs, each 
connecting a stationary base platform to a moving platform via spherical joints. These are often termed 
"generalized Stewart platforms." Given the lengths of the six legs, the forward displacement problem is 
to find the location of the end platform relative to the base platform. It was first demonstrated numerically 
that the problem may in general have at most 40 nonsingular solutions and this bound has been verified 
using several different mathematical arguments. The problem is reformulated in this report using a 
classical representation of rigid-body displacements: Study's soma coordinates, or equivalently, dual 
quaternions. This provides a much simpler analytical proof of the upper bound of 40. Moreover, the 
simple form of the equations may be useful in further studies of the problem. 

1. INTRODUCTION 

Consider a platform manipulator as shown in Fig. 1, consisting of a moving "end plate" supported 
from a "base plate" by six extensible "legs". On the end plate there have been selected six points 
having vector coordinates b0 . . . .  , b5 in the reference frame of the body. For each of these there 
is a corresponding point in the base plate having vector coordinates a 0 , . . . ,  as, resp., in the fixed 
reference frame. At any particular position p and rotation R of the end plate, there will be unique 
squared distances 

L2i = (p + R b i -  ai)T(p + R b i -  ai), i = 0 . . . . .  5. (1) 

One may build a device wherein the distances L~ are directly actuated by a prismatic joint in line 
with two spherical joints connected at points a~ and bi. When held at constant length, each such 
leg imposes one constraint on the motion of the end plate, and hence six legs together are generally 
sufficient to hold the end plate rigidly. Such a structure can be classified as a six-in-parallel SPS 
platform manipulator, also known as a generalized Stewart platform. 

The inverse displacement problem of determining the joint displacements L i necessary to hold 
the end plate in a given location (p, R) are straightforwardly evaluated from equation (1). However, 
the forward displacement problem of determining the end plate location given the leg lengths is 
more difficult. In planning and control of such a robot, it is convenient to have efficient solution 
algorithms for both problems. 

It is known that the forward displacement problem has at most 40 nonsingular solutions. This 
was first demonstrated numerically, using polynomial continuation [I]. When carried out care- 
fully, this approach provides a strong experimental demonstration, with solid mathematical 
underpinnings. Also, polynomial continuation can provide a reasonably efficient method for 
determining solutions in floating point arithmetic. For example, a 7-variable formulation that 
tracks 40 continuation paths has been timed at approximately 14 s CPU time on an IBM RS/6000 
workstation in Fortran double precision, with proportionately less CPU time required to solve 
platforms of various special geometries having fewer solutions [2]. Other applications of 
continuation to this problem are reported in [3, 4]. 

Even with a trustworthy numerical demonstration in hand, a rigorous mathematical proof is 
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~ - Base 'plate 
Fig. 1. A general six-in-parellel SPS platform manipulator. 

desirable to eliminate all doubt and possibly to better understand the problem. It could be hoped 
that such understanding might lead to better numerical algorithms for solving the problem. The 
first proof has been attributed by Lazard [5] to Ronga and Vust (unpublished). Unfortunately, the 
proof was of an abstract mathematical nature (intersection theory, Chern classes, etc.), which is 
of little assistance to the roboticist in the search for better algorithms. An alternative proof due 
to Lazard [5] hinges on the computation of a Gr6bner basis for rigid-body motions represented 
by vectors p, t and rotation matrix R, subject to the following polynomial relations: 

RTR=L d e t R = l ,  p = R t ,  t=RTp. (2) 

The resulting Gr6bner basis has 41 elements, 5 of which are cubic with the rest being quadratics. 
It is claimed that computing a Hilbert function of this ideal shows that it is of degree 20, and 
therefore with the addition of the element pTp we have degree 40. Equations (1) are linear on these 
elements, hence there are at most 40 nonsingular solutions. This proof suggests the use of Gr6bner 
bases to solve particular examples. However it was found that when an example problem of the 
form of equations (1) was appended to the basis, the computation of the new Gr6bner basis 
required on the order of 4 hours [5]. Lazard's Gr6bner basis and Hilbert function calculations were 
done by computer. Mourrain [6] has put forward a similar demonstration worked out by hand, 
although it is not an easy derivation. Mourrain has also attacked the problem using quaternions 
to represent rotation [7]. He reports obtaining a Gr6bner basis of degree 40 for specific examples 
in about 1/2 hour. Furthermore, he gives an argument using resultants which shows that, after 
properly accounting for solutions at infinity, the general case has 40 solutions.t 

In addition to these results for the general case, there have been many publications concerning 
platforms with special geometries wherein the problem has been reduced to a polynomial of degree 
40 or less in one variable [1, 8-22]. Such reductions generally lead to the fastest algorithms, 
although issues of numerical stability have not been closely examined. 

The contribution of this paper is to give a simple proof of the upper bound of 40 non- 
singular solutions. We formulate the problem in soma coordinates, which leads to a simpler 
presentation of the polynomial system. From this new formulation, the upper bound on the 
number of solutions can be concluded by examining the degrees of the equations. It is hoped 
that the simplicity of this new formulation will be useful in further understanding of the 
forward displacement problem. 

t Subsequent to the submission of this paper, a reduction of the problem to a univariate polynomial of degree 40 has 
been found by M. L. Husty [23]. 
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2. F O R M U L A T I O N  IN S O M A  C O O R D I N A T E S  

Study's soma coordinates are, except for a factor of 1/2, identical to dual quaternions 
[24, pp. 150-152, pp. 521-524]. We recall the following facts concerning quaternions. First, we note 
that a quaternion is a 4-tuple, say q = (qo, ql, qz, q3), which we write as a scalar q0 and a vector 
t] = (ql, q2, q3), hence q = (q0,4). We speak of  the realpart of a quaternion, Re(q) = q0, and also 
the conjugate of  a quaternion, q ' =  (q0, - 4 ) .  A scalar by itself may be considered a quaternion 
whose vector part is zero, and similarly a vector standing alone is a quaternion whose real part 
is zero. Addition of quaternions is carried out element by element, in the natural way. Quaternion 
multiplication, which we denote with the symbol "*",  can be expressed in terms of vector 
dot-products and cross-products in 3-space as 

q , r = (qor o - q . r, q x i + qoP + ~ro). (3) 

Other useful facts are that quaternion multiplication is associative, and conjugation of  a product 
behaves like a matrix transpose, i.e., (q • r) '  = r '  * q'. An important fact for our purposes is that 
for any 3 × 3 rotation matrix R there is a corresponding unit quaternion e such that the rotation 
Rb of an arbitrary vector b is given by 

e * e'  = 1, (4) 

Rb = e  *b *e ' .  (5) 

In this representation, e and - e  both give the same rotation R. The right-hand side of equation 
(5) can be written out in matrix form to give an explicit formula for R in terms of the components 
of  the quaternion. 

In addition to introducing the quaternion e to represent rotation, soma coordinates include a 
quaternion g to indirectly represent position as 

p = g  * e'. (6) 

Since the position p is a pure vector, we have the requirement 

Re (g * e') = 0. (7) 

Note that the pairs (g, e) and ( - g ,  - e )  both give the same rotation and position. Whenever (g, e) 
satisfy the additional conditions equations (4, 7), they give a unique position and rotation as in 
equations (5, 6). Conversely, except for the choice of sign, a given rotation R determines a unique, 
non-zero e, from which we may find g as g = p  • e. Thus, the soma coordinates, (g, e) subject to 
equations (4, 7), form a set of  coordinates for representing rigid-body displacements. 

With these preparatory facts in hand, we may restate the forward kinematics problem in soma 
coordinates. Using equations (5, 6) to rewrite Rb~ and p, and using the fact that multiplication of  
a quarternion by its own conjugate gives the squared length, one obtains 

L ~ = ( g * e ' + e * b i * e ' - a , ) * ( g * e ' + e * b i * e ' - a i ) ' ,  i = 0  . . . . .  5. (8) 

These six equations along with equations (4, 7) are 8 equations to be solved for (g, e). 

3. R E D U C T I O N  TO QUADRATIC E Q U A T I O N S  

We begin by expanding equation (8) and use the fact that q + q'  = 2 Re(q) for any quaternion 
q to get f o r i = 0  . . . . .  5 

L2i = g  , e '  , e  *g '  + e  * b i * e ' * e  *b~ *e '  

+ a i * a ~ + 2 R e ( g , e ' * e * b ~ * e ' - g * e ' * a ~ - e , b i , e ' , a ~ ) .  (9) 

Since e is a unit quaternion, this can be rewritten as 

g *g '  +(bi*b~ + a i * a ~ - L ~ ) ( e  * e ' ) +  2Re(g  * b ~ * e ' - g  * e ' * a ~ - e  * b i * e ' * a ~ ) = O .  (10) 

(We could replace e * e'  with 1, but write the equations in this homogeneous form to assist in further 
reduction below.) Without loss of generality, we may choose a0 and b0 as the origin points for the 
base and end coordinate systems, i.e., let a0 = 0 and b0 = 0. Accordingly, 
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g , g ' - - L ~ e  *e'  =0. (11) 

This equation can be subtracted from the other five to get 

(b i ,b;  + a i , a ; - L ~  + L2)(e , e ' ) + 2 R e ( g  * b ~ * e ' - g  , e '  , a ~ - e  *b i*e '  *a~)=O, 

i = 1 . . . . .  5. (12) 

Equations (7, 11, 12) are 7 homogeneous quadric equations in (g, e) ~ p7, where p7 is seven-dimen- 
sional projective space, i.e., lines through the origin in C 8. The total degree is 27= 128. 
Alternatively, equations (4, 7, 11, 12) are 8 quadric equations in (g, e ) e  C 8 with total degree 256. 
Each solution in p7 cuts the unit sphere [equation (4)] in two diametrically opposed points, which 
are the solutions in C 8. Of course, in either case, even though we may choose to solve the 
polynomial equations over complex numbers, only real solutions are physically meaningful. 

In what follows, we abandon the quaternion notation and rewrite the equations considering g 
and e as 4 × 1 column vectors. One may check that the equations are of the form 

eXe = 1 (13) 

g're = 0 (14) 

gXg _ L~eTe = 0 (15) 

eTAi e q- 2gTBi e = 0, i = 1 . . . .  ,5, (16) 

where A~ and B~ are 4 x 4 matrices depending on ai, bi, L~ and L0. These are given explicitly in the 
Appendix. It is important to note that B~ is antisymmetric. This may be shown using the facts that 
Re(q) = Re(q') and Re(q • r) = Re(r • q) for any quaternions q and r. Consequently, 

gXBie = Re(g * b~ * e" - g * e '  • a~) = Re(e * b i * g' - ai * e * g')  = Re(e * bi * g" - e • g' * ai). 

But a~ and b~ are pure vectors, so a~ = -a~ and b~ = -b~. Thus, 

gTB~e = - R e ( e  • b~ * g '  - e * g '  • a~) = - e r B i g  = --gT(Bjre. 

Since this holds for any g and e, we have B~ = - (B i )  T, which is the result we seek. 
It is convenient to make g non-dimensional, which can be accomplished with the change of 

coordinates g = Log. We get 

eTe = 1 (17) 

gTe = 0 (18) 

gTg _ eTe = 0 (19) 

eT,71ie + 2gTBie = 0, i = 1 . . . .  ,5, (20) 

where ,4~ = A~/Lo. It can be shown using intersection theory and Chern classes that ignoring the 
first of these equations and working on p7, this system has at most 84 isolated solutions when the 
B~ are general, and at most 40 isolated solutions when the B~ are antisymmetric [25]. However, we 
wish to proceed in a more elementary way. 

4. PROOF OF 40 S O L U T I O N S  

Theorem. For  any Ai and any antisymmetric Bi, (i = 1 . . . . .  5), the polynomial system of  
equations (17-20) has at most 40 pairs of nonsingular solutions of the form +(g, e). 
Proof." The fact that the solutions appear in pairs differing only in sign is readily seen by noting 
that every term appearing in the equations is of degree 0 or 2. We will establish the upper bound 
of 40 pairs by writing the system as a member of a parameterized family of systems and showing 
that no member of that family can have more than 80 nonsingular solutions. To this end, consider 
the modified system consisting of  equations (17-19) with 

eT~lie + 2gTBie _ ) 2gx,~ig = 0, i = 1 , . . . ,  5. (21) 
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The forward kinematic problem is the same as this new system when 22= 0. Suppose, however, 
that we solve this for some other value 2 ~ 0. Then, we may use the change of coordinates 

x = e  +2~,  ~ = e - - 2 ~ .  (22) 

Due to the quadratic form of  the equations, we may assume without loss of  generality that -4i is 
symmetric. Further, since Bi is antisymmetric, it can be seen that 

x T ( A i  "Jr- B,/2)Yc = eT.4i e q- 2~TBi e - -  22gT.,z~ig, (23) 

and hence by equation (21) 

xT(Ai + B,/2)dc = 0, i = 1 . . . . .  5. (24) 

Additionally, using equations (17-19), we have 

xT~ = eTe -- 22~v~ = I -- 22, (25) 

xTx = eve + 2~T~ + 2er~ = 1 + 22, (26) 

~x~ = eTe + 2z~T~ _ 2eV~ = 1 + 22. (27) 

The 2-homogeneous Bezout number of  the transformed system, equations (24-27), can be 
computed as follows [26]. Equations (24, 25) are bi-linear in x and ~, equation (26) is quadratic 
in x, and equation (27) is quadratic in ~. Accordingly, the Bezout number is the coefficient of  c¢4fl 4 
in the combinatorial product (u + fl)6(2~)(2fl), which is (~)2z = 80. This shows that equations 
(24-27) can have at most 80 nonsingular solutions. For 2 ~ 0, variables (x, ~) are a nonsingular 
linear change of  coordinates from variables (~, e), and thus the system of  equations 07-19,  21) also 
has at most 80 nonsingular solutions. 

By Theorem 1 of [27], the number of  nonsingular solutions for generic 2 is an upper bound on 
the number of  nonsingular solutions for any particular 2, and so equations (17-19, 21) can have 
at most 80 such solutions at 2 = 0. But this is the same system as the original system, equations 
(17-20). Since solutions to that system appear in pairs _+ (~, e) corresponding to the same physical 
displacement, there are at most 40 solutions to the forward displacement problem. Q.E.D. 

Remark 1. Although we have proven only that 40 is an upper bound, it is in fact a sharp bound. 
Any demonstration of an example having 40 solutions is sufficient to establish this result, which 
has been done both by numerical continuation and in exact arithmetic via Gr6bner bases (see 
Section 1). An example having 40 real solutions has yet to be found. 

Remark 2. Rather than appealing to Theorem l of [27], the proof  can be based on a continuity 
argument. By continuity and the implicit function theorem, each nonsingular solution at 2 = 0 
extends to a nonsingular solution on an open set around zero. But we have bounded the number 
of  nonsingular solutions for 2 :~ 0. 

Remark 3. The proof  suggests a homotopy for solving the problem by polynomial continuation. 
Choose generic complex 2 and (-4i + Bi/2) = uiv~, where ui and v~ are generic complex 4 × 1 vectors. 
Then, equation (24) is the product of  two linear factors: (U~x)T(v~Yc) = 0. For  each i = 1 . . . .  ,5, 
one of  these factors must be zero. All 40 pairs of  solutions to equations (24--27) can then be found 
via Gaussian elimination and the quadratic formula. By the definition of x, ~, these can be 
transformed to pairs of solutions to equations (17-19, 21). Tracking one of each pair of  solution 
paths in a homotopy taking 2 to zero and .4~, B~ to the target problem will form a valid 40-path 
continuation method for obtaining all non-singular solutions to the forward displacement problem. 
However, this does not offer any significant advantage over a more conventional parameter 
homotopy wherein one solves equations (17-20) once as a 256-path homotopy to a generic example 
and then thereafter tracks 40 paths in a homotopy through the .4~, B;parameter space. 

Remark 4. The transformed coordinates x = e + 2~ are strongly reminiscent of displacements 
formulated in terms of the "dual quaternion" e +Eg/2 wherein E is the "dual" number 
(E ~ 0, E 2 = 0) [24, pp. 521-524]. 
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5. C O N C L U S I O N S  

T h e  f o r w a r d  d i s p l a c e m e n t  p r o b l e m  can  be expressed  in s o m a  c o o r d i n a t e s  as e i the r  8 q u a d r i c  

e q u a t i o n s  on  C 8 o r  7 h o m o g e n e o u s  q u a d r i c  e q u a t i o n s  on  p7. I n  e i ther  case,  it is s h o w n  tha t  the re  

a re  at  m o s t  40 n o n s i n g u l a r  so lu t ions  us ing  the  pr inc ip les  o f  p a r a m e t e r  c o n t i n u a t i o n  a n d  

2 - h o m o g e n e o u s  B e z o u t  n u m b e r s .  T h e  a r g u m e n t  is m u c h  s imple r  t h a n  p r e v i o u s  p roofs .  M o r e o v e r ,  

the  l o w  degree  a n d  spars i ty  o f  the  p o l y n o m i a l s  sugges ted  tha t  this m a y  be a g o o d  s ta r t ing  p o i n t  

fo r  fu tu re  w o r k  on  this p r o b l e m .  

T h e  ap tness  o f  s o m a  c o o r d i n a t e s  fo r  this  p r o b l e m  suggests  t ha t  they  m a y  also be useful  in so lv ing  

the  k i n e m a t i c s  o f  o t h e r  in -para l l e l  l i nkages  o r  m i x e d  para l l e l / se r ia l  l inkages .  
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A P P E N D I X  

Expressions for A i and B i 

Let 14 and 13 be the 4 × 4 and 3 × 3 identity matrices, respectively. The matrices A i and B~ derive from equation (14), 
which is in quaternion form. Using the formula for quaternion multiplication as in equation (3) to expand equation (14) 
and noting that ai and b~ are both pure vectors, one obtains 

2( oTb, (b, × 
A, = (bTb, + aTai- L 2 + L2)14 -- \b, x a, b,a r, + aibY - aTb,IJ" 

To write B i in matrix form it is convenient to introduce the following notation: for any 3 x 1 vector v, let A(v) denote the 
antisymmetric 3 × 3 matrix corresponding to the cross-product, that is A (v)x = v x x. Then one has 

B~=(b O a, (a'-b')~ ~ 
--a(a, + b,) f  



Forward displacement analysis of SPS platform manipulators 337 

A N A L Y S E  D U  M O D U L E  G i ~ O M I ~ T R I Q U E  D I R E C T  D E S  R O B O T S  P A R A L L I ~ L E S  

G I ~ N I ~ R A U X  A L ' A I D E  D E S  C O O R D O N N I ~ E S  " S O M A "  

R6sam6---Les robots parall61es g6n6raux sont constitubs de six segments de longueur variable reliant une base fixe ~i un 
plateau mobile. Chaque segment est connect6 fi la fois ~i la base et au plateau mobile par des rotules. Ces robots sont parfois 
appel6s "Plate-forme de Stewart g6n6ralis6e". Le mod61e g6om6trique direct consiste ~ d6terminer la pose du plateau mobile 
6tant donn6 les longueurs des six segments. I1 a d'abord 6t6 d6montr6 num6riquement que ce probl6me ne pouvait avoir 
plus de 40 solutions et cette borne a par la suite 6t6 confirm6e par des preuves utilisant divers arguments math6matiques. 
Dans cet article le probl6me est formul6 ~i l'aide d'une repr6sentation classique des d6placements d'un corps solide: les 
coordonn6es "Soma" d6finies par Study qui sont 6quivalents aux quaternions duaux. Cette repr6sentation permet d'6tablir 
une preuve analytique beaucoup plus simple de la borne du nombre de solutions. De plus la forme simplifi6e qui est obtenue 
pour les bquations peut s'av6rer utile pour la suite de l'analyse de ce probl6me. 


